High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch

FEATURES

100 ps propagation delay through the switch 2Ω switches connect inputs to outputs
Data rates up to 933 Mbps
Single 3.3 V/5 V supply operation
Level translation operation
Ultralow quiescent supply current (1 nA typical)
3.5 ns switching

Switches remain in the off state when power is off
Standard 3257 type pinout

APPLICATIONS

Bus switching

Bus isolation
Level translation
Memory switching/interleaving

GENERAL DESCRIPTION

The ADG3257 is a CMOS bus switch comprised of four 2:1 multiplexers/demultiplexers with high impedance outputs. The device is manufactured on a CMOS process. This provides low power dissipation yet high switching speed and very low on resistance, allowing the inputs to be connected to the outputs without adding propagation delay or generating additional ground bounce noise.

The ADG3257 operates from a single $3.3 \mathrm{~V} / 5 \mathrm{~V}$ supply. The control logic for each switch is shown in Table 1. These switches are bidirectional when on. In the off state, signal levels are blocked up to the supplies. When the power supply is off, the switches remain in the off state, isolating Port A and Port B.
This bus switch is suited to both switching and level translation applications. It can be used in applications requiring level translation from 3.3 V to 2.5 V when powered from 3.3 V. Additionally, with a diode connected in series with $5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$, the ADG3257 may also be used in applications requiring 5 V to 3.3 V level translation.
Table 1. Truth Table

$\overline{\mathbf{B E}}$	\mathbf{S}	Function
H	X	Disable
L	L	$A=B_{1}$
L	H	$A=B_{2}$

Rev. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 1.

PRODUCT HIGHLIGHTS

1. 0.1 ns propagation delay through switch.
2. 2Ω switches connect inputs to outputs.
3. Bidirectional operation.
4. Ultralow power dissipation.
5. 16-lead QSOP package.

ADG3257

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
REVISION HISTORY
03/08-Rev. D to Rev. E
Updated Format

\qquad
Universal
Changes to Features. 1
Changes to General Description 1
Changes to Absolute Maximum Ratings5
Changes to Pin Configuration and Function Descriptions 6
Changes to Test Circuits 9
Changes to Ordering Guide 11
11/04—Rev. C to Rev. D
Changes to Specifications 2
Changes to Ordering Guide 4
04/03-Rev. A to Rev. B
Updated Outline Dimensions 8
06/02-Rev. 0 to Rev. A Edits to Features 1
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Test Circuits 9
Applications Information 10
Mixed Voltage Operation, Level Translation. 10
Memory Switching 10
Outline Dimensions 11
Ordering Guide 11

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

[^0]
ADG3257

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 3.

Parameter ${ }^{1}$	Symbol	Conditions ${ }^{2}$	B Version			Unit
			Min	Typ ${ }^{3}$	Max	
DC ELECTRICAL CHARACTERISTICS						
Input High Voltage	$\mathrm{V}_{\text {INH }}$		2.0			V
Input Low Voltage	$V_{\text {INL }}$		-0.3		+0.8	V
Input Leakage Current	11	$0 \leq \mathrm{V}_{\text {IN }} \leq 3.6 \mathrm{~V}$		± 0.01	± 1	$\mu \mathrm{A}$
Off State Leakage Current	loz	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\text {cc }}$		± 0.01	± 1	$\mu \mathrm{A}$
On State Leakage Current	loz	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\text {cc }}$		± 0.01	± 1	$\mu \mathrm{A}$
Maximum Pass Voltage ${ }^{4}$	V_{P}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=-5 \mu \mathrm{~A}$	2.3	2.6	2.8	V
CAPACITANCE ${ }^{4}$						
A Port Off Capacitance	C_{A} OFF	$\mathrm{f}=1 \mathrm{MHz}$		7		pF
B Port Off Capacitance	C_{B} OFF	$\mathrm{f}=1 \mathrm{MHz}$		5		pF
A, B Port On Capacitance	$\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}} \mathrm{ON}$	$\mathrm{f}=1 \mathrm{MHz}$		11		pF
Control Input Capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$		4		pF
SWITCHING CHARACTERISTICS ${ }^{4}$						
Propagation Delay A to B or B to A, tpd	tPHL, tPLH^{5}	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			0.10	ns
Propagation Delay Matching ${ }^{6}$		$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		0.01	0.04	ns
Bus Enable Time $\overline{B E}$ to A or B	tpzh, tpzl	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1	5.5	9	ns
Bus Disable Time $\overline{B E}$ to A or B	$\mathrm{t}_{\text {PHz, }} \mathrm{t}_{\text {PLZ }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1	4.5	8.5	ns
Bus Select Time S to A or B						
Enable	$\mathrm{t}_{\text {SEL_en }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$		8	12	ns
Disable	tsel_dis	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$		6	9	ns
Maximum Data Rate		$\mathrm{V}_{\mathrm{A}}=2 \mathrm{~V}$ p-p		933		Mbps
DIGITAL SWITCH						
On Resistance	Ron	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{l}_{0}=15 \mathrm{~mA}, 8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	4	Ω
		$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{I}_{0}=15 \mathrm{~mA}, 8 \mathrm{~mA}$			5	Ω
		$\mathrm{V}_{A}=1 \mathrm{~V}, \mathrm{lo}=15 \mathrm{~mA}, 8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	7	Ω
		$V_{A}=1 \mathrm{~V}, \mathrm{I}_{0}=15 \mathrm{~mA}, 8 \mathrm{~mA}$			8	Ω
On-Resistance Matching	$\Delta \mathrm{RoN}^{\prime}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=15 \mathrm{~mA}, 8 \mathrm{~mA}$		0.2		Ω
POWER REQUIREMENTS						
Vcc			3.0		5.5	V
Quiescent Power Supply Current	Icc	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$		0.001	1	$\mu \mathrm{A}$
Increase in Icc per Input ${ }^{4,7}$	$\Delta \mathrm{lcc}$	$\mathrm{V}_{c \mathrm{c}}=3.3 \mathrm{~V}$, one input at 3.0 V ; others at V_{cc} or GND			200	$\mu \mathrm{A}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

Parameter	Rating
Vcc to GND Digital Inputs to GND	-0.3 V to +6 V
DC Input Voltage	-0.3 V to +6 V
DC Output Current	-0.3 V to +6 V
Operating Temperature Range	100 mA
\quad Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
QSOP Package	
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$149.97^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
\quad Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
\quad IR Reflow, Peak Temperature (<20 sec)	$220^{\circ} \mathrm{C}$
Soldering (Pb-Free)	
\quad Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
\quad Time at Peak Temperature	20 sec to 40 sec

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ADG3257

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S	Port Select.
$2,3,5,6,10,11,13,14$	$1 \mathrm{~B}_{1}, 1 \mathrm{~B}_{2}, 2 \mathrm{~B}_{1}, 2 \mathrm{~B}_{2}, 3 \mathrm{~B}_{2}, 3 \mathrm{~B}_{1}, 4 \mathrm{~B}_{2}, 4 \mathrm{~B}_{1}$	Port B, Inputs or Outputs.
$4,7,9,12$	$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}$	Port A, Inputs or Outputs.
8	GND	Negative Power Supply.
15	$\overline{\mathrm{BE}}$	Output Enable (Active Low).
16	V CC	Positive Power Supply.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. Input Voltage

Figure 4. On Resistance vs. Input Voltage

Figure 5. On Resistance vs. Input Voltage for Different Temperatures

Figure 6. On Resistance vs. Input Voltage for Different Temperatures

Figure 7. Icc vs. Enable Frequency

Figure 8. Maximum Pass Voltage

ADG3257

Figure 9. Maximum Pass Voltage

Figure 10. 622 Mbps Eye Diagram

Figure 11.933 Mbps Eye Diagram

TEST CIRCUITS

${ }^{1}$ PULSE GENERATOR FOR ALL PULSES: $\mathrm{t}_{\mathrm{F}}<\mathbf{2 . 5 n s}, \mathrm{t}_{\mathrm{R}}<\mathbf{2 . 5 n s}$.
${ }^{2} C_{L}=$ INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.
${ }^{3} R_{\mathrm{T}}$ IS THE TERMINATION RESISTOR; SHOULD BE EQUAL TO $Z_{O U T}$ OF THE PULSE GENERATOR.

Figure 12. Load Circuit

Figure 13. Propagation Delay

Figure 14. Select, Enable, and Disable Times

ADG3257

APPLICATIONS INFORMATION

miXed Voltage operation, Level translation

Bus switches can be used to provide a solution for mixed voltage systems where interfacing bidirectionally between 5 V and 3.3 V devices is required. To interface between 5 V and 3.3 V buses, an external diode is placed in series with the 5 V power supply as shown in Figure 15.

Figure 15. Level Translation Between 5 V and 3.3 V Devices
The diode drops the internal gate voltage down to 4.3 V . The bus switch limits the voltage present on the output to

$$
V_{C C}-\text { External Diode Drop }=V_{T H}
$$

Therefore, assuming a diode drop of 0.7 V and a $\mathrm{V}_{\text {TH }}$ of 1 V , the output voltage is limited to 3.3 V with a logic high.

Figure 16. Input Voltage to Output Voltage

Similarly, the device could be used to translate bidirectionally between 3.3 V to 2.5 V systems. In this case, there is no need for an external diode. The internal $\mathrm{V}_{\text {TH }}$ drop is 1 V , so with a $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ the bus switch limits the output voltage to

$$
V_{C C}-1 \mathrm{~V}=2.3 \mathrm{~V}
$$

Figure 17. 3.3 V to 2.5 V Level Translation Using the ADG3257 Bus Switch

MEMORY SWITCHING

This quad bus switch may be used to allow switching between different memory banks, thus allowing additional memory and decreasing capacitive loading. Figure 18 illustrates the ADG3257 in such an application.

Figure 18. Allows Additional Memory Modules Without Added Drive or Delay

OUTLINE DIMENSIONS

Figure 19. 16-Lead Shrink Small Outline Package [QSOP]
(RQ-16)
Dimensions shown in inches

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG3257BRQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG3257BRQ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG3257BRQ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG3257BRQZ 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG3257BRQZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG3257BRQZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Shrink Small Outline Package [QSOP]	RQ-16

[^2]
ADG3257

NOTES

[^0]: ${ }^{1}$ Temperature range is: Version B: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ See Test Circuits section.
 ${ }^{3}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
 ${ }^{4}$ Guaranteed by design, not subject to production test.
 ${ }^{5}$ The digital switch contributes no propagation delay other than the RC delay of the typical Ron of the switch and the load capacitance when driven by an ideal voltage source. Because the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the digital switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
 ${ }^{6}$ Propagation delay matching between channels is calculated from on-resistance matching of worst-case channel combinations and load capacitance.
 ${ }^{7}$ This current applies to the control pins only and represents the current required to switch internal capacitance at the specified frequency. The A and B ports contribute no significant ac or dc currents as they transition.

[^1]: ${ }^{1}$ Temperature range is: Version $\mathrm{B}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ See Test Circuits section.
 ${ }^{3}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
 ${ }^{4}$ Guaranteed by design, not subject to production test.
 ${ }^{5}$ The digital switch contributes no propagation delay other than the RC delay of the typical Ron of the switch and the load capacitance when driven by an ideal voltage source. Because the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the digital switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
 ${ }^{6}$ Propagation delay matching between channels is calculated from on-resistance matching of worst-case channel combinations and load capacitance.
 ${ }^{7}$ This current applies to the control pins only and represents the current required to switch internal capacitance at the specified frequency. The A and B ports contribute no significant ac or dc currents as they transition.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

